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1 Introduction

American media tend to be partisan in their coverage of politics, and partisanship has increased
in recent years.1 Americans have started to take note: According to a Pew Research Survey in
2020, 79% of Americans believe “In presenting the news dealing with political and social issues...
news organizations tend to favor one side.”2 The partisanship has led to lower trust in media:
The percentage of US adults who have at least some trust in the information from national news
organizations has decreased from 76% in 2016 to 58% in 2021.3

Nevertheless, some citizens find it worthwhile to pay attention to the news—even in a land-
scape with biased media and low trust. Citizens might benefit from paying attention to a media
source, as long as its slant is known and there is enough information in its coverage to potentially
alter citizens’ choices. Whether to followmedia is thus a strategic choice that dependsona variety
of factors, among which are (i) the initial opinions of citizens, (ii) the citizens’ attitudes about the
discussed policies, and (iii) the adopted slant of media sources.

Citizens are not the only strategic actors. Media, albeit partisan, are also strategic in their
choice of slant. They consider the distribution of opinions and attitudes in societywhen deciding
on their slant.4 By their choice of slant, media effectively choose their audience. What is the
partisan media’s adopted bias given the distribution of initial opinions and attitudes? Who pays
attention tomedia, given the bias?

In this paper, we model the slant decision of partisan media and study how it changes with
changes in society’s opinions and attitudes. Themedia face a sophisticated audiencewith diverse
preferences and beliefs. The individuals in the audience choose whether to pay attention to the
news given the media slant, and the media choose whom to target by choosing their editorial
policies.

Our main findings are threefold. First, the optimal choice of slant is qualitatively different in
polarized and unimodal (or non-polarized) societies. When society is unimodal in its opinions
and attitudes, partisan media tailor their messaging to individuals already in the media’s camp.
In contrast, partisanmedia attempt to convince skepticswhen society is polarized. Second,when
partisanmedia’s agenda becomesmore popular among the citizens, themedia becomemore bi-
ased.

Third, when the opinions and attitudes become more polarized, partisan media’s bias de-
creases. This finding suggests that polarization may have a silver lining: It may force partisan
media to be more informative. If polarization is strong enough, the media may find it optimal

1See Groseclose andMilyo (2005), Larcinese, Puglisi and Snyder Jr (2011), Puglisi and Snyder Jr (2011), and Lott and Hassett (2014).
2https://www.pewresearch.org/pathways-2020/WATCHDOG_3/total_us_adults/us_adults
3https://www.pewresearch.org/fact-tank/2021/08/30/partisan-divides-in-media-trust-widen-driven-by-a-decline-amo

ng-republicans/
4There is an active literature focused on quantifying how exposure to partisan media shapes the opinions and attitudes of citizens

(Levendusky, 2013; Prior, 2013) or political behavior (DellaVigna and Kaplan, 2007; Martin and Yurukoglu, 2017). Our approach in this
paper is to take the opinions and attitudes as given and study how strategic media respond to the existing attitudes.
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to reach beyond their base of support and tailor their messaging to the opinions and attitudes
of their opponents. This result complements the central thesis of Oliveros and Várdy (2015) by
offering a supply-side rationale for ideological moderation under political polarization.

At themodel’s heart is a trade-off facedbypartisanmedia. Themediawant topersuadecitizens
to takeacertainaction (suchas supportingapolicyorvoting foracandidate). Therefore, naturally,
the media would like to spin the news in their desired direction (since such a spin increases the
support among the citizens who pay attention to the news). However, the audience is sophisti-
cated and realizes that the coverage has a spin. As a result, fewer people pay attention to parti-
san media because the bias makes the coverage less informative. The partisan media’s choice is
thus representedbyan intensive-versus-extensive-margin trade-off. Apositive spin leads tohigher
support among those who pay attention to the news (i.e., gains along the intensive margin) but
fewer people paying attention to the news (i.e., losses along the extensive margin). The optimal
policy balances these two effects.

Themedia’s optimalpolicy is different inunimodal andpolarized societies. Aunimodal society
has many citizens with moderate opinions and attitudes. Moderates are swayed by even small
amounts of information, so they pay attention to the news even if it is significantly biased. As
a result, the extensive margin is relatively less sensitive to changes in the spin. In equilibrium,
the media place a positive spin on their coverage to the point where marginal gains along the
intensivemargin equalmarginal losses along the extensivemargin. Due to the positive spin of the
news, negative news is less frequent and more informative. Consequently, even citizens initially
supportive of the media’s agenda pay attention to the news since the occasional news that goes
against their prior changes their actions.

There are few moderates in highly polarized societies. Instead, there are two blocs of citizens
with extreme opinions and attitudes: supporters who take the media’s preferred action unless
there is informative negative news and opponents who do not take the preferred action unless
the news is positive and highly informative. Themedia must convince the opponents to listen to
the news without alienating the supporters. The optimal strategy is to put a negative spin on the
news so that the occurrence of positive news is an event rare enough to convince the opponents.
Still, the negative news is abundant enough that they do not sway supporters’ opinions. Partisan
media thus end up reaching out to citizens with opposing views.

The trade-off between the two margins is also behind our comparative statics results. When
media’s platform becomes more popular, there are more supporters in society, and the audience
of partisanmedia increases. As a result, improving the intensity of persuasionbecomesmore cru-
cial, and the media place a more positive spin on their coverage. On the other hand, an increase
in polarization in a unimodal society turns somemoderates into radicals, who are not inclined to
listen to the news unless if it is highly informative. Consequently, it becomesmore important for
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themedia to improve the extent of its reach bymaking the news informative enough for radicals.
The outcome is a less positive spin andmore informative media.

Related Literature. Our model is a Bayesian persuasion model à la Kamenica and Gentzkow
(2011) with a heterogeneous audience. We incorporate both heterogeneous preferences (Wang,
2015; Alonso and Câmara, 2016a; Kolotilin, Mylovanov, Zapechelnyuk and Li, 2017; Bardhi and
Guo, 2018; Chan, Gupta, Li and Wang, 2019; Arieli and Babichenko, 2019; Kerman, Herings and
Karos, 2021; Sun, Schram and Sloof, 2022) and heterogeneous priors (Alonso and Câmara, 2016b;
Laclau and Renou, 2017; Kosterina, 2021).5 We present our theoretical results by introducing a
new object, the virtual density, which summarizes the two dimensions of heterogeneity in a one-
dimensional object. Our comparative statics results are based on identifying changes that lead to
tractable changes in the virtual density. This approach is similar in spirit to the one in Kolotilin
(2015) and Kolotilin, Mylovanov and Zapechelnyuk (2021). But unlike Kolotilin (2015), whose
main focus is changes in welfare, we analyze how the optimal policy changes with parameters
of the model. Our measure of popularity is complementary to that in Kolotilin, Mylovanov and
Zapechelnyuk (2021), and our measure of polarization is a novel one. Sun, Schram and Sloof
(2022) derive comparative statics results with respect to the sender’s preferences and the voting
rule in a voting environment with heterogeneous preferences. Our comparative statics result
complement theirs by focusing on changes with respect to the audience’s characteristics.

Our findings contribute to the theory of media bias (see Gentzkow, Shapiro and Stone (2015)
for a survey). Unlike Mullainathan and Shleifer (2005) and Bernhardt, Krasa and Polborn (2008),
in our model, citizens choose media sources purely on informational grounds. Gentzkow and
Shapiro (2006), Burke (2008) and Chan and Suen (2008) propose models where slant can arise
when the media are not inherently biased towards an outcome. As in Baron (2006) and Duggan
andMartinelli (2011), we study an environmentwhere themedia are inherently biased, with their
mainobjective thepersuasionof citizens. Our focus is onhow the intensity anddirectionofmedia
bias respond to changes in the audience’s characteristics.

A large recent literature has focused on quantifying the extent of polarization (DiMaggio,
Evans and Bryson, 1996; Glaeser and Ward, 2006; Ansolabehere, Rodden and Snyder Jr, 2006;
McCarty, Poole and Rosenthal, 2006; Fiorina and Abrams, 2008; Abramowitz and Saunders, 2008;
Gentzkow, 2016). The causes and consequences of polarization have also gathered attention in
the popular press (Sunstein, 2009; Klein, 2020). But relatively little attention has been paid to
the question of how media respond to polarization. Another active research area studies how
the changing media landscape—partisan or not—affects the patterns of polarization in society

5Also related is the literature on information design, which studies the optimal information structure in a game to be played among
multiple players (Bergemann andMorris, 2019; Taneva, 2019; Mathevet, Perego and Taneva, 2020; Inostroza and Pavan, 2022).
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(Campante and Hojman, 2013; Flaxman et al., 2016; Bail et al., 2018). Our focus here is the
opposite: understanding how themedia landscape is affected by polarization.

A possible interpretation of ourmodel is as one in which themedia truthfully report the news,
but politicians suppress or overturn them. Our findings can then be interpreted as follows: (i)
as the politician becomes more popular, she chooses to suppress more news, (ii) as society be-
comes more polarized, the politician allows for more informative media, and (iii) in a highly po-
larized society, the politician allows negative news to be published, in order to convince her op-
ponents without alienating her supporters. Through this lens, ourmodel contributes to the liter-
ature onmedia capture (Besley and Prat, 2006; Corneo, 2006; Petrova, 2008; Prat, 2015), informa-
tionmanipulation by autocratic regimes (Edmond, 2013; Shadmehr and Bernhardt, 2015; Guriev
and Treisman, 2020), and media freedom (Egorov, Guriev and Sonin, 2009; Gehlbach and Sonin,
2014; Boleslavsky, Shadmehr and Sonin, 2021).

The crucial assumption in the Bayesian persuasion literature is commitment by the sender. In
our model, partisan media can commit to a strategy, which is observable by all receivers. This
assumption can be defended on several grounds. First of all, in our setup, persuasion satisfies the
credibability assumption of Lin and Liu (2021).6 Second, the media’s chosen strategy can viewed
as an “editorial policy,” which describes the general attitude of a media source, with the details
of the coverage to be decided by reporters and editors (Gehlbach and Sonin, 2014). Finally, the
outcomeunder commitment canbe seenas abenchmark,whichdescribes thebest-case scenario
for the sender. Under this interpretation, our results characterize an “ideal media landscape” for
a politician in a heterogeneous society. Our results show that, in a highly polarized society, the
politicianmay indeed benefit frommedia that frequently publish negative news about the politi-
cian. Intuitively, this is the only way the politician can garner the opponents’ support. The rare,
but convincing, occurrence of positive news about politician is the most effective way for politi-
cians to convince skeptical citizens (Chiang and Knight, 2011).

2 Setup

2.1 TheModel

There are two types of agents: a sender (female) and a unit measure of receivers (males), indexed
by @ ∈ [0, 1]. The sender wants to persuade the receivers to support a policy she is proposing.
Beforepersuading the receivers, the sender learnswhether thepolicy is good for the receivers. But
the receivers donot learn this informationuntil after theyhavedecidedonwhether to support the
policy.

6In particular, we can allow for undetectable deviations by the sender. Since the sender’s payoff in our model is additively separable,
there is no profitable deviation that gives the samemessage distribution as the optimal policy. It should be noted that with heterogeneous
priors, the set of undetectable deviations is different for each agent. In such a case, one has to define the undetectable deviations from the
perspective of the sender.
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There is an underlying state of the world: \ ∈ {0, 1}. We call the \ = 1 state the “good” state.
When the state is good, the sender’s proposed policy is beneficial to the receivers. The \ = 0 state
is the “bad” statewhere the policy is not beneficial to the receivers. Each receiver has to decide on
the extent to which to support the policy. We denote by 0@ ∈ [0, 1] receiver @ ’s degree of support
for the policy. Receiver @ ’s payoff when he chooses action 0@ and the state is \ is given by

C@ (0@ , \ ) = 0@ (\ − 2@ ), (1)

where 2@ ∈ [0, 1] is receiver @ ’s cost of supporting the policy. If receiver @ knew the state, he would
give the policy his full support (i.e., 0@ = 1) in the good state and no support (i.e., 0@ = 0) in the bad
state.

The sender wants tomaximize the support from the receivers. Her payoffwhen receiver @ pro-
vides support 0@ and the state is \ is given by

CA ({0@ }@ ) =
∫ 1

0
0@3@ . (2)

When the state is good, the sender and receivers have common interests, whereas when the state
is bad, their interests areopposed. Wedenote the sender’s prior that the state is goodby>A ∈ (0, 1).

Since the receivers donot observe the state, they canonly act basedon their beliefs. The sender
can influence those beliefs (and the resulting actions) by sending informative messages. To sim-
plify the analysis, we assume that the sender can commit to a public communication strategy
f : {0, 1} → Δ(" ), where f (\ ) [;] is the probability that public message ; ∈ " is generated
when the state is \ . The communication strategy represents the editorial policies of a collection
of partisanmedia controlled by the sender and used by her to influence the views of the receiver
population.

The receivers are heterogeneous both in their preferences and their prior beliefs. The hetero-
geneity of priors captures the idea that even peoplewith identical payoffsmay have different per-
spectives about the likelihood that a given policy will succeed. We let >@ denote receiver @ ’s prior
that the state is good and, let 5 (2 ,>) denote the joint density of costs and priors in the popula-
tion of receivers. We take 5 as a primitive of the model and study how changing the distribution
affects the sender’s optimal policy. We assume that 5 is common knowledge and continuously
differentiable and bounded over its support.

We can partition the set of receivers into ex-ante supporters and ex-ante opponents of the pro-
posedpolicy. Any receiver @ with>@ ≥ 2@ is an ex-ante supporter, whowould support theproposed
policy without additional information. Ex-ante supporters are in the bottom right half of Figure
1. Conversely, the receivers in the top left half of Figure 1 are ex-ante opponents, who have high
costs and unfavorable priors and would not support the policy without additional information.

The heterogeneity of perspectives poses a challenge for a sender who wants to garner broad
support for her proposed policy. Convincing different receivers with different preferences and
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Figure 1. The ex-ante supporters and opponents of the policy.

beliefs requires different communication strategies. Yet, communication is public, so the sender
cannot tailor hermessaging strategy to the diverse perspectives of receivers. Themain character-
ization result of the paper concerns the optimal way of resolving the inherent tension in convinc-
ing different segments of the population.

Timing. The timing of the communication game is as follows:

1. The prior and cost of each receiver is drawn, and each receiver @ observes (>@ , 2@ ).

2. The sender commits to a strategy f , which is observed by each receiver.

3. The state is realized, and the sender sends themessage drawn according to f .

4. Each receiver @ updates his prior and chooses an action 0@ .

5. Payoffs are realized.

The solution concept we adopt is the Perfect Bayesian Equilibrium.

2.2 An Equivalent Representative-Receiver Problem

The fact that the sender is communicating with a population of heterogeneous receivers com-
plicates her problem. However, the sender’s optimal strategy can be found by solving a related
persuasion problemwith a representative receiver whose prior coincides with the sender’s prior.

The key simplification comes from Proposition 1 of Alonso and Câmara (2016b). Consider re-
ceivers @ and @ ′ with priors >@ and >@ ′ = >A . Since the two receivers observe the same (public)
message, their posteriors are related through the following expression:

`@ =
`@ ′

>@
>@ ′

`@ ′
>@
>@ ′
+ (1 − `@ ′) 1−>@1−>@ ′

, (3)
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where`@ and`@ ′ denote the posteriors of @ and @ ′, respectively.7 This coupling of posteriors holds
regardless of the communication strategy employedby the sender. It uniquely pins down thepos-
terior `@ of every receiver @ as a function of the posterior of receiver @ ′—whowill be our represen-
tative receiver.

Receiver @ takes action 0@ = 1 if and only if his posterior that the state is good is at least as large
as his cost of action; that is, if and only if

2@ ≤ 2 (`A , >@ ) ≡
`A

>@
>A

`A
>@
>A
+ (1 − `A ) 1−>@1−>A

, (4)

where `A denotes the posterior of the representative receiver (who has the same prior as the
sender). The payoff to the sender is given by the share of receivers who take the good action:

D (`A ) =
∫ 1

0

∫ 2 (`A ,>)

0
5 (>, 2 )323>. (5)

The sender’s problem is thus equivalent to a standardBayesianpersuasionproblemwith a rep-
resentative receiver. The sender and the receiver share the commonprior>A that the state is good.
Thepayoff to the senderwhen she induces a posterior of`A for the representative receiver is given
by D (`A ), defined in equation (5). Following Kamenica and Gentzkow (2011), we refer to D (`A ) as
the sender’s value function. Whenever there is no risk of confusion, we drop the A subscript and
simplywriteD (`) for the value to the senderof inducingposterior` for the representative receiver.

Figure 2 shows a useful graphical representation of the value function. The value to the sender
from inducing posterior ` is given by the measure of receivers @ who take the 0@ = 1 action (the
area shaded in red in the figure). This measure depends on the distribution of costs and priors
in the population as well as the induced posterior `. As ` increases, more and more receivers
support the proposed policy, expanding the shaded area in the figure and increasing the sender’s
payoff.

Thevalue functionhas severalusefulproperties. First,D (`) is increasing in`. Inducingahigher
posterior for the representative receiver results in a higher posterior for every receiver, thus in-
creasing the share of receivers who take the 0 = 1 action. Second, D (0) = 0 and D (1) = 1. When the
representative receiver is certain that the state is bad, so is every other receiver. Therefore, every
receiver takes the 0 = 0 action. Likewise, when the representative receiver is certain that the state
is good, every other receiver is also certain that the state is goodand takes the0 = 1 action. Finally,
D (`) is differentiable in ` due to the differentiability of 5 .

The value functioncan thusbe seenas adifferentiable cumulativedistribution function. We let
ℎ (`) ≡ D ′(`) denote the corresponding density and refer to it as the virtual density of the persua-
sion problem with heterogeneous receivers. The virtual density has an intuitive interpretation:
ℎ (`) is the density of receivers who are indifferent between taking the two actions whenever the
representative receiver’s posterior is equal to `.

7Throughout the paper, we use posterior to mean subjective posterior probability of state \ = 1 given an agent’s information.
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Figure 2. The value function: ` < >A in the left panel and ` > >A in the right panel.

2.3 Single-Peaked Distributions

The solution to the sender’s optimal persuasion problem takes a particularly simple form when
the distribution of receiver types satisfies the following condition:

Definition1 (single-peakeddensity). Thevirtual densityℎ (`) is single-peaked if there exists some
˜̀ ∈ [0, 1] such that ℎ ′(`) > 0 for all ` < ˜̀ and ℎ ′(`) < 0 for all ` > ˜̀.

Single-peakedness is an assumption on the joint distribution of receivers’ costs and prior be-
liefs. It requires a large share of receivers to have moderate preferences and beliefs, with fewer
and fewer people having extreme preferences or beliefs. We thus consider single-peaked virtual
densities to be representative of unimodal societies.

The significance of Definition 1 rests on the following observation: When the virtual density
is single-peaked, the sender’s value function is first convex and then concave. Figure 3 illustrates
the value function in this case. Corollary 2 of Kamenica and Gentzkow (2011) implies that, under

𝜇

𝑣 (𝜇)1

1�̂�

Figure 3. The value function under the assumption that the virtual density is single-peaked.
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the sender’s optimal strategy, the representative receiver’s posterior only takes two values. In par-
ticular, we have the following characterization of the optimal strategy when the virtual density is
single-peaked:

Theorem 1. If the virtual density is single-peaked, the optimal strategy uses only twomessages.

Wemaintain the assumptionof single-peakedness in thenext two sections. Wedo so inpart for
tractability. However, single-peaked distributions also constitute a natural and widely used class
of distribution functions. In Section 5, we show that optimal strategy in the casewhere the virtual
density is instead single-dipped is the mirror image of the optimal strategy in the single-peaked
case.

Whether the virtual density is single-peaked only depends on the distribution of types, 5 , and
the sender’s prior,>A . In the remainder of this subsection, we find a set of easy-to-check sufficient
conditions for the virtual density to the single-peaked. If receivers have a common prior which
coincides with the sender’s prior, then the single-peakedness of the virtual density is equivalent
to the single-peakedness of the density of costs:

Proposition 1. Suppose >@ = >A for all @ . The virtual density ℎ (`) is single-peaked in ` if and only
if the density of costs 5 (2 ) is single-peaked in 2 .

If receivers have a common cost, on the other hand, then the single-peakedness of the virtual
density is implied by a condition that is weaker than the log-concavity of the density of priors:

Proposition 2. Suppose 2@ = 2 ∈ (0, 1) for all @ . The virtual density ℎ (`) is single-peaked if the
density of priors 5 (>) is strictly positive for all > ∈ (0, 1) and satisfies

32

3>2
log 5 (>) < 2 (W − 1)2min

{
1, 1
W 2

}
for all > ∈ (0, 1), (6)

whereW ≡ 1−2
2

1−>A
>A
≥ 0.

The following corollary of Proposition 2 is a straightforward consequence of the facts that the
left-hand side of equation (6) is negative if 5 (>) is log-concave, while its right-hand side is always
non-negative:8

Corollary 1. Suppose 2@ = 2 for all @ . The virtual density ℎ (`) is single-peaked in ` if the density of
priors 5 (>) is strictly log-concave in > .

3 Optimal Policy

3.1 Never-supporters, Always-supporters, and Compliers

In light of Theorem 1, we can assumewithout loss that the sender uses only twomessages. We la-
bel themessages; ∈ " = {0, 1}, with; = 1 the “good”message, which is suggestive of \ = 1, and

8See Bagnoli and Bergstrom (2005) for a list of well-known distributions satisfying log-concavity.
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; = 0 the “bad” message, which is suggestive of \ = 0. The sender’s strategy can be represented
by a pair of numbers:

f = (f0, f1) ∈ [0, 1]2,

where f \ ≡ f (\ ) [; = 1] is the probability of sending the good message in state \ ∈ {0, 1}.
Throughout, we assume without loss of generality that f1 ≥ f0.

Themedia’s optimal strategy thus partitions the set of receivers into three groups:

1. The never-supporters, who choose 0 = 0 regardless of themessage;.

2. The compliers, who choose 0 = ;.

3. The always-supporters, who choose 0 = 1 regardless of themessage;.

The never-supporters set 0 = 0 even if they receive the goodmessage: They are not convinced
by the media because their initial beliefs are too pessimistic relative to their costs. The always-
supporters set 0 = 1 even if they receive the bad message because of their optimistic priors and
low costs. The compliers are the the most interesting group. They pay attention to the news and
adjust their actions in response to what they learn.

Our next result characterizes the set of never-supporters, compliers, and always-supporters as
a function of the strategy followed by the sender:

Proposition 3. Given (f0, f1), where f1 ≥ f0, let:

> (2 ) ≡ 2f0

2f0 + (1 − 2 )f1 , (7)

> (2 ) ≡ 2 (1 − f0)
2 (1 − f0) + (1 − 2 ) (1 − f1) . (8)

Receiver @ is a never-supporter if >@ < > (2@ ), a complier if >@ ∈ [> (2@ ), > (2@ )), and an always-
supporter if >@ ≥ > (2@ ).

Figure 4 illustrates the partition of receivers. When themedia are fully uninformative (i.e.,f1 =
f0), then > (2 ) = > (2 ) = 2 for all 2 ∈ [0, 1], and no receiver is a complier. The sets of always-
supporters and never-supporters then coincide with the sets of ex-ante supporters and ex-ante
opponents, respectively. The lightly shaded region of Figure 4 then disappears, and the figure
reduces to Figure 1. As the media become more informative, the set of compliers grows at the
expense of the always-supporters and never-supporters. When the media are fully informative
(i.e., f1 = 1 and f0 = 0), every receiver is a complier, and the lightly shaded area comprises the
entirety of the unit square.

3.2 Intensive and ExtensiveMargins

By choosing its strategy, the sender effectively chooses who is a complier and how frequently the
compliers see the good message. The sender wants to turn as large a share of the receivers as
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Figure 4. The set of never-supporters, compliers, and always-supporters given policy (f0, f1).

possible into compliers (and always-supporters) and send the goodmessage as often as possible.
However, she faces a trade-off between these two objectives.

One can view the sender’s trade-off as one involving improvements along intensive and exten-
sive margins. The sender’s expected payoff from following strategy (f0, f1) is given by(∫ 1

0

∫ > (2 )

> (2 )
5 (>, 2 )3>32

)
︸                             ︷︷                             ︸

measure of compliers

(
>Af

1 + (1 − >A )f0
)

︸                     ︷︷                     ︸
likelihood of the goodmessage

+
∫ 1

0

∫ 1

> (2 )
5 (>, 2 )3>32︸                        ︷︷                        ︸

measure of always-supporters

, (9)

where > and > are given by (7) and (8), respectively. The sender wants to increase the likelihood
of the goodmessage. Doing so increases the probability that the compliers support the proposed
policy, thus allowing the sender to gain support along the intensive margin. But increasing the
likelihood of the good message makes the media less informative. The decrease in the infor-
mativeness of the media turns some compliers into never-supporters and always-supporters.
If many more compliers become never-supporters than always-supporters, the sender loses
support along the extensive margin. Figure 5 illustrates this trade-off.

3.3 Who Follows theMedia?

We now turn to the question of how the sender optimally resolves her trade-off.

Proposition 4. If the virtual density is single-peaked, under the optimal strategy:

1. The badmessage fully reveals the bad state.

2. The ex-ante supporters are all compliers.

The argument for the Proposition can be best understood by studying Figure 3. When the vir-
tual density is single-peaked, optimal persuasion involves moving the representative receiver’s
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Figure 5. The trade-off between gaining support along the intensive and extensive margins for the f1 = 1 case.
Choosing a higher f0 leads to a higher likelihood of the good message (gain along the intensive margin) but
fewer compliers (loss along the extensive margin).

posterior to one of two points: ` = 0 and ` = ˆ̀.9 Inducing the ` = 0 posterior requires the bad
message to fully reveal the bad state. But then even the most ardent ex-ante supporters find it
worthwhile to follow the media on the off chance that the state is revealed to be bad. Therefore,
every ex-ante supporter is a complier, and there are no always-supporters. Figure 6 illustrates the
partition of receivers under the optimal persuasion strategy.

𝑝

𝑐

1

1

never-
supporters

compliers

Figure 6. The set of never-supporter and compliers when the virtual density is single-peaked.

The intuition behind the result is as follows. Moderate receiverswithmiddling costs andpriors
are the ones most inclined to follow the media since their behavior is sensitive even to messages
with little information about the state. When the virtual density is single-peaked, there are many

9When the sender’s prior is high enough that>A > ˆ̀ in Figure 3, the optimal strategy reveals no information, and any strategy that satisfies
f0 = f1 is optimal. In such a case, we choose the strategy f0 = f1 = 1 and assume that a receiver’s posterior following the (zero probability)
badmessage is given by ` = 0.
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moremoderates than are receivers with extreme preferences or beliefs. Therefore, the sender has
muchmore togainby increasing the likelihoodof thegoodmessageand theprobabilityof support
from the moderates than it has to lose from turning ex-ante opponents off. Figure 5 depicts the
trade-off facedby the sender in this case. Under the optimal policy, themarginal gain fromhaving
more compliers—themeasure of receivers in the grey sliver—equals the expected loss of support
from compliers—the likelihood that receivers in the red region support the policy.

4 Media Bias in Unimodal Societies

Themedia arebiased if they send the goodmessagewhen the state is bador send thebadmessage
when the state is good. Recall that, when the virtual density is single-peaked, optimal persuasion
entails sending the good message when the state is good. Therefore, media bias is conveniently
summarized in the single-peaked case by the probability f0 of sending the good message when
the state is bad. We use the following notion of media bias in this case:

Definition 2. Consider single-peaked virtual densities ℎ1 and ℎ2 with the corresponding optimal
strategies f1 = (f01 , f11 ) and f2 = (f02 , f12 ) for the sender. Themedia aremore biased given ℎ1 than
given ℎ2 if f01 ≥ f02 .

In this section, we characterize how changes in the primitives of themodel affect the extent of
media bias.

4.1 Changes in Popularity

Wefirst study how shifts in the distribution of costs and priors affect the sender’s optimal strategy
and the resultingmedia bias. We use the following partial orders on the set of distributions:

Definition 3. Consider probability density functions 51 and 52with the corresponding cumulative
distribution functions �1 and �2. We say 51 is larger than 52 in the hazard rate order if

51(F)
1 − �1(F)

≤ 52(F)
1 − �2(F)

for all F. (10)

Definition 4. Consider probability density functions 51 and 52with the corresponding cumulative
distribution functions �1 and �2. We say 51 is larger than 52 in the reversed hazard rate order if

51(F)
�1(F)

≥ 52(F)
�2(F)

for all F. (11)

Hazard rate and reversed hazard rate orders are related to two well-known partial orders on
distributions: They are more complete than the monotone-likelihood ratio property (MLRP) but
less complete than first-order stochastic dominance (FOSD).10 If 51 is larger than 52 in the hazard
rate or reversed hazard rate orders, then it also first-order stochastically dominates 52.

Our next result establishes that an increase in the support for the policy increases media bias:
10See, for instance, Shaked and Shanthikumar (2007, Section 1.B).
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Theorem 2. Let ℎ1 and ℎ2 be two single-peaked virtual densities. If ℎ1 is smaller than ℎ2 in the
reversed hazard rate order, the media are more biased given ℎ1 than ℎ2.

The result states that media are more biased when the policy has a larger ex-ante support. A
smaller virtual density indicates amore popular policy. With amore popular policy, a larger frac-
tion of receivers support the policy absent any persuasion by the sender. Therefore, the optimal
strategy involves less information transmission and more reliance on the receivers’ priors, and
themedia are thus less informative andmore biased under the sender’s optimal strategy.

Why is the reversed hazard rate order the right notion? The answer is best seen by examining
the trade-off the sender faces between improving along the intensive andextensivemargins. Sup-
pose the sender reduces the probability of the good message when the state is bad by 3f0. The
result is a reduction in the posterior of the representative receiver following the observation of
the good signal by some 3` (which is related to 3f0). The change makes the media more infor-
mative and increases the measure of compliers by ℎ (`)3`, an improvement along the extensive
margin. But this gain comes at the expense of reducing the probability that the inframarginal
compliers support thepolicyby� (`)3f0, a loss along the intensivemargin. Therefore,ℎ (`)/� (`)
is a measure of the net benefit from making the media more informative. When ℎ1(`)/�1(`) ≤
ℎ2(`)/�2(`), the sender gains relatively more by making the media more informative when the
virtual density isℎ2 than when it isℎ1. Consequently, themedia aremore biased when the virtual
density is ℎ1.

We next study two special cases of Theorem 2, where receivers have common costs or priors.
With a common prior, the reversed hazard rate order on virtual densities reduces to the reversed
hazard rate order on the distributions of costs:

Corollary 2. Suppose >@ = >A for all @ , and consider two single-peaked densities 51(2 ) and 52(2 ) for
the receivers’ cost of support. If 51 is smaller than 52 in the reversed hazard rate order, the media are
more biased given 51 than 52.

Intuitively, the condition identified in Corollary 2means that the costs are lower under 51 than
they are under 52. This translates into a more popular policy. But when the proposed policy is
more popular, the gains to the sender from persuasion are lower. Therefore, the media are less
informative andmore biased when receivers have lower costs of support.

If the receivers have common costs, on the other hand, a larger distribution of priors in the
hazard rate order leads to a smaller virtual density in the reversed hazard rate order. The intuition
forwhyweneed thedensities ofpriors tobeordered in thehazard rateorder—andnot the reversed
hazard rate order as in Corollary 2—is as follows: Higher priors act like lower costs, making the
policy more popular and lowering the gains from persuasion and the resulting media bias. The
following corollary to Theorem 2 formalizes this intuition:
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Corollary 3. Suppose 2@ = 2 for all @ , and consider two distributions of priors 51(>) and 52(>) that
are both strictly positive for all> ∈ (0, 1) and satisfy condition (6). If 51 is larger than 52 in the hazard
rate order, the media are more biased given 51 than 52.

4.2 Polarization

We next examine how increased polarization changes media bias. We measure the extent of po-
larization using a novel partial order on probability distributions:

Definition 5. Consider single-peaked densities 51 and 52 supported on a common compact set
and satisfying

52(F) =
( 51(F))U

^
for all F, (12)

some U > 0, and a normalization constant ^ > 0. If 0 < U ≤ 1, then 52 ismore polarized than 51. If
U ≥ 1, then 52 is less polarized than 51.

0.0 0.2 0.4 0.6 0.8 1.0

less polarized

more polarized

Figure 7. The polarization order on single-peaked densities.

The partial order has an intuitive interpretation. Consider densities 51 and 52 satisfying (12)
for some U > 1. Going from 51 to 52 moves mass from parts of the distribution that initially have
smallermass topartswith larger initialmass. In otherwords, 52 looks like 51, butwithhigher peaks
anddeeper troughs. On the other hand, since 51 is single-peaked,most of itsmass is concentrated
around its peak. Therefore, 52 has evenmoremass in the center and even lessmass in the periph-
ery than 51; that is, 52 is less polarized than 51. Figure 7 illustrates the probability density functions
for a set of single-peaked Beta distributions that are ranked in the polarization order.

It is instructive to consider the extremes of equation (12). In the U → ∞ limit, 52 becomes a
pointmassat themodeof 51. Therefore, foranydistribution 51withauniquemode, thedegenerate
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distribution 52with a pointmass on themodeof 51 is less polarized than 51. Conversely, in the U →
0 limit, 52 becomes the uniform distribution on the support of 51. Thus, the uniform distribution
is more polarized than any single-peaked distribution with the same support.

Membersofmanyparametric familiesofdistributions canbeordered in thepolarizationorder.
Two examples follow:

Example 1. Consider two single-peaked Beta distributions:

51 = Beta(U1, V1),
52 = Beta(U2, V2),

where U2−1
U1−1 =

V2−1
V1−1 = U for someU ≥ 0. IfU ≤ 1, then 52 ismorepolarized than 51, while ifU ≥ 1, then

52 is less polarized than 51. In particular, any two symmetric and single-peaked Beta distributions
are ranked according to the polarization partial order.

Example 2. Consider the following truncated normal distributions on [0, 1]:

51 = TruncatedNormal(`, f21 ),
52 = TruncatedNormal(`, f22 ).

If f22 ≥ f21 , then 52 is more polarized than 51, while if f22 ≤ f21 , then 52 is less polarized than 51.

Our next result establishes that polarization decreases media bias:

Theorem 3. Let ℎ1 and ℎ2 be two single-peaked virtual densities. If ℎ1 is more polarized than ℎ2,
thenmedia are less biased given ℎ1 than ℎ2.

Theorem3 suggests a striking consequence of polarization: It tends to reduce the partisanme-
dia’s bias. Intuitively, an increase in polarization turns some ex-ante moderates into ex-ante ex-
tremists. Under the optimal policy, then, there are fewer compliers and more never-supporters.
As a result, the intensivemargin becomes less important. The change in the trade-off incentivizes
partisan media to reduce its bias and increase its outreach. Indeed, one may expect the segrega-
tion in news consumption to decrease as polarization increases, even with the existence of parti-
sanmedia.

This result suggests a potential explanation for (Gentzkow and Shapiro, 2011, p.1819)’s finding
that “There is no evidence that ideological segregation on the Internet has increased. If anything,
segregationhas declined as the Internet news audiencehas grown.” It is also consistentwith Flax-
man, Goel and Rao (2016)’s finding that social networks and search engines are “associated with
an increase in an individual’s exposure tomaterial from his or her less preferred side of the polit-
ical spectrum.”

Theorem 3 describes the consequences of polarization for media bias while maintaining the
assumption that the society is unimodal, and so, the virtual density is single-peaked. In the next
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section, we study persuasion in highly polarized societies in which there are more people in the
extremes of preference and belief distribution than are at its center.

5 Highly Polarized Societies

Throughout this section, we study the properties of the optimal persuasion strategy when the
virtual density is the polar opposite of single-peaked:

Definition6 (single-dippeddensity). The virtual densityℎ (`) is single-dipped if there exists some
˜̀ ∈ [0, 1] such that ℎ ′(`) < 0 for all ` < ˜̀ and ℎ ′(`) > 0 for all ` > ˜̀.

In a society with a single-dipped virtual density, there are fewer moderates than those with
extreme preferences or beliefs. We therefore consider single-dipped virtual densities to be repre-
sentative of highly polarized societies (DiMaggio, Evans and Bryson, 1996; Fiorina and Abrams,
2008).

When the virtual density is single-dipped, the sender’s value function is first concave and then
convex. Our next result shows that, as a result, the optimal persuasion strategy is qualitatively
different in a highly polarized society compared to a unimodal one:

Proposition 5. If the virtual density is single-dipped, the optimal strategy uses only twomessages.
Under the optimal strategy:

1. The goodmessage perfectly reveals the good state.

2. The ex-ante opponents are all compliers.

𝜇

𝑣 (𝜇)1

1�̂�

Figure 8. The value function under the assumption that the virtual density is single-dipped.

The argument for the proposition is easiest to see by examining the sender’s value function.
Figure 8 illustrates the value function in this case. When the distribution is single-dipped, the op-
timalpolicy inducesonly twovalues for theposteriorof the representative receiver, oneofwhich is
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` = 1.11 For the goodmessage to induce the` = 1posterior, itmust perfectly reveal the good state.
But since the goodmessage is fully revealing, even themost vehement ex-ante opponents find the
good message informative enough to sway their decision. Therefore, all ex-ante opponents are
compliers, and there are no never-supporters. Figure 9 illustrates the partition of receivers under
the optimal policy.

𝑝
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1

1

always-
supporters

compliers

Figure 9. Receivers under the optimal policy when the virtual density is single-dipped.

We next introduce a set of sufficient conditions for the virtual density to be single-dipped. If
receivers have a common prior which coincides with the sender’s prior, the single-dippedness of
the virtual density is equivalent to the single-dippedness of the density of costs:

Proposition 6. Suppose >@ = >A for all @ . The virtual density ℎ (`) is single-dipped in ` if and only
if the density of costs 5 (2 ) is single-dipped in 2 .

If receivers have a common cost, the single-dippedness of the virtual density is implied by a
condition that is slightly stronger than the log-convexity of the density of priors:

Proposition 7. Suppose 2@ = 2 for all @ . The virtual density ℎ (`) is single-dipped if

m2

m>2
log 5 (>) > 2 (W − 1)2max

{
1, 1
W 2

}
for all > ∈ [0, 1], (13)

whereW ≡ 1−2
2

1−>A
>A
≥ 0.

Note that the right-hand side of equation (13) is positive, and the left-hand side is positive if
5 (>) is log-convex. Therefore, condition (13) can be interpreted as “5 (>) being sufficiently log-
convex.” If>A+2 = 1, thenW = 1, andcondition (13) reduces to the log-convexity of thedistribution
of priors.
11When the sender’s prior is low enough that >A < ˆ̀ in Figure 8, the optimal policy reveals no information, and any policy that satisfies

f0 = f1 is optimal. In that case, we choose the policy according to which f0 = f1 = 0 and set the receivers’ posterior following the (zero
probability) goodmessage to ` = 1.
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When the virtual density is single-dipped, themedia’s optimal strategy entails sending the bad
message when the state is bad. Then, media bias is summarized by the probability f1 of sending
the goodmessage when the state is good:

Definition 7. Consider single-dipped virtual densities ℎ1 and ℎ2 with the corresponding optimal
strategies f1 = (f01 , f11 ) and f2 = (f02 , f12 ) for the sender. Themedia aremore biased given ℎ1 than
given ℎ2 if f11 ≤ f12 .

In the remainder of this section, we characterize how changes in the primitives of the model
affect the extent of media bias in the single-dipped case.

5.1 Changes in Popularity

We begin by studying how shifts in the distribution of costs and priors affect the sender’s optimal
strategy and the resulting media bias. Our results are expressed in terms of the partial orders in-
troduced in Section 4.1. Not surprisingly, as in the single-peaked case, an increase in the support
for the policy increases media bias:

Theorem 4. Let ℎ1 and ℎ2 be two single-dipped virtual densities. If ℎ1 is smaller than ℎ2 in the
hazard rate order, the media are more biased given ℎ1 than ℎ2.

Whenthevirtualdensity is single-dipped, the rightnotionofpopularity is thehazard rateorder.
Intuitively, because the ex-ante opponents are all compliers, the measure of inframarginal com-
pliers is 1 −� (`). Consequently, ℎ (`)/(1 −� (`)) informs the intensive-versus-extensive-margin
trade-off.

Withacommonprior, thehazard rateorderonvirtualdensities reduces to thehazard rateorder
on the distributions of costs:

Corollary 4. Suppose >@ = >A for all @ , and consider two single-dipped densities 51(2 ) and 52(2 ) for
the receivers’ cost of support. If 51 is smaller than 52 in the hazard rate order, the media are more
biased given 51 than 52.

If the receivers have common costs, a larger distribution of priors in the reversed hazard rate
order leads to a smaller virtual density in the hazard rate order, and so, we have the following
corollary to Theorem 4:

Corollary 5. Suppose 2@ = 2 for all @ , and consider two distributions of priors 51(>) and 52(>) that
are both strictly positive for all > ∈ (0, 1) and satisfy condition (13). If 51 is larger than 52 in the
reversed hazard rate order, the media are more biased given 51 than 52.

19



5.2 Polarization

We next examine the impact of increased polarization onmedia bias. The following partial order
is theappropriate adaptationof thepartial orderdefined inSection4.2 for single-peakeddensities
to the set of single-dipped virtual densities:

Definition 8. Consider single-dipped densities 51 and 52 supported on a common compact set
and satisfying

52(F) =
( 51(F))U

^
for all F, (14)

some U > 0, and a normalization constant ^ > 0. If U ≥ 1, then 52 ismore polarized than 51. If
0 < U ≤ 1, then 52 is less polarized than 51.

Figure 10 illustrates thepolarizationpartial order ona set of a single-dippedBetadistributions.
As the distribution becomesmore polarized,mass ismoved from the center of the distribution to
its extremes.

0.0 0.2 0.4 0.6 0.8 1.0

less polarized

more polarized

Figure 10. The polarization order on single-dipped densities.

It is, once again, instructive to consider the limits of equation (14). In the U → ∞ limit, 52
becomes two point masses at the bounds of the support. Our measure identifies such distribu-
tions as extremely polarized. Conversely, in the U → 0 limit, 52 becomes the uniformdistribution.
Thus, theuniformdistribution is less polarized thanany single-dippeddistributionwith the same
support.

Ournext result establishes that, as in the single-peakedcase, polarizationdecreasesmediabias
in the single-dipped case:

Theorem 5. Let ℎ1 and ℎ2 be two single-dipped virtual densities. If ℎ1 is more polarized than ℎ2,
thenmedia are less biased given ℎ1 than ℎ2.

Theorem 5 shows that the main message of Theorem 3 continues to apply for single-dipped
virtual densities: Polarization tends to reduce the partisan media’s bias. Intuitively, an increase

20



in polarization turns some ex-ante moderates into ex-ante extremists. Under the optimal policy,
then, there are fewer compliers and more always-supporters. As a result, partisan media find it
beneficial to reduce their bias and increase their outreach.

5.3 Polarization andMedia Bias

Theorems 3 and 5 paint a consistent picture across the board: Polarization reduces media bias.
This observation can be succinctly summarized in a single figure by extending the polarization
partial order.

0

0.25

0.5

0.75

1

bias

bias

single-dipped single-peaked

more polarized

f1

f0

Figure 11. Partisanmedia’s bias as a function of polarization in society.

Take a single-peaked virtual densityℎ1 supported on [0, 1], and consider the parametric family
of distributions {ℎU}U parameterized by the scalar U ∈ ℝ:

ℎU (F) =
(ℎ1(F))U
^ (U) for all F,

where ^ (U) is a normalization constant. For positive values of U, ℎU is a single-peaked distribu-
tion. It becomes more polarized as U decreases to zero. As U → 0, ℎU converges to the uniform
distribution, which is more polarized than any single-peaked distribution. For negative values of
U,ℎU is a single-dippeddensity,which ismorepolarized than theuniformdistribution. It becomes
more polarized as U becomesmore negative. The upshot is that a lower value of U—be it positive
or negative—corresponds to amore polarized society.

Figure 11 illustrates the effect of polarization onmedia bias. The virtual density is a (symmet-
ric) Beta(1 + U, 1 + U) distribution, and the sender’s prior is given by>A = 0.4. The figure plots how
themedia’s optimal strategy changes asU ranges from−1 to+1. In the right half of thefigure,U > 0,
the distribution is single-peaked, and so, by Proposition 4, the optimal policy has the form (f0U ,
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f1U ) = (f0U , 1). As polarization increases, by Theorem 3, f0U decreases and the media become less
biased. On the left half of the figure, U < 0, the distribution is single-dipped, the optimal policy
has the form (f0U , f1U ) = (0, f1U ) (by Proposition 5), and f1U increases andmedia bias decreases with
polarization (by Theorem 5).

Transitioning from a single-peaked to a single-dipped virtual density changes the nature of
partisan media’s optimal policy. This makes it hard to compare the extent of bias in the single-
peaked and single-dipped cases. We continue using our simple measure of bias while acknowl-
edging that any suchmeasure will be imperfect. The change in the nature of optimal policy as we
transition from a single-peaked to a single-dipped density manifests itself in a possibly discon-
tinuous change in our measure of media bias, as can be seen in Figure 11.

6 Conclusion

Mass polarization has increased in recent decades (Abramowitz and Saunders, 2008; Gentzkow,
2016; Alesina, Miano and Stantcheva, 2020). This has led to concerns about the negative conse-
quences of polarization. Perhaps chief among them is the concern that increased exposure to
partisan media may further polarize their audience, creating a vicious cycle (Iyengar and Hahn,
2009; Stroud, 2010; Levendusky, 2013). This problem is especially grave when individuals have
preferences for like-minded news (Gentzkow and Shapiro, 2010; Gentzkow, Shapiro and Stone,
2015; Chopra, Haaland and Roth, 2021; Fowler and Kim, 2022; Herrera and Sethi, 2022).

This paper identifies a force in the opposite direction: Whenmedia are strategic, and citizens
are sophisticated, polarization reducesmedia bias. Polarization increases the number of citizens
with extreme opinions and attitudes relative to the number of moderates. Partisan media thus
have more to gain by reaching out to citizens on the fringes of society. The very fact that such
citizens are harder to convince compels themedia to becomemore informative and reduce their
bias. This theoretical channel is a potential explanation for Prior (2013)’s finding that “There is no
firm evidence that partisanmedia are making ordinary Americansmore partisan.”

In this paper, we considered a singlemedia source. While our theoretical resultsmaintain their
relevance as a study of a politician’s “ideal media landscape,” the question of how they change
with competition among several media sources (Chen and Suen, 2021; Perego and Yuksel, 2022;
Sun, Schram and Sloof, 2022) is a fruitful avenue for future research.
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Appendices

A Proofs for Section 2

Because 5 is continuously differentiable over its support and bounded, ℎ ′(`) exists and is con-
tinuous. We begin by noting that the virtual density is single-peaked if and only if ℎ ′(`) satisfies
the strict single-crossing-from-above property. The strict single-crossing property is adapted from
(Milgrom and Shannon, 1994, p.160) and is as follows:

If ℎ ′(`) ≥ 0 for some ` ∈ [0, 1], then ℎ ′( ˜̀) > 0 for all ˜̀ < `.

In our proofs, we rely on the equivalence of this condition with single-peakedness of ℎ.

Proof of Theorem 1. If ℎ ′(`) satisfies the strict single-crossing-from-above condition, by defini-
tion, so does D ′′(`). Therefore, whenever D (`) is convex at `, it is strictly convex at any ˆ̀ < `.
Thismeans thatD (`) is first strictly convex and then strictly concave. Therefore, the set where the
concave closure of D (`)—call it+ (`)—coincides with D (`) has the following form:

{` ∈ [0, 1] :+ (`) = D (`)} = {0} ∪ [ ˆ̀, 1],

for some ˆ̀ ∈ [0, 1].
When >A < ˆ̀, by Corollary 2 of Kamenica and Gentzkow (2011), the optimal policy generates

two posteriors: ` ∈ {0, ˆ̀}. This is achieved by twomessages.
When >A ≥ ˆ̀, the optimal policy is not revealing any information. This can also be achieved

by twomessages,; ∈ {0, 1}, and an information structure where Pr(; = 1|\ = 0) = Pr(; = 1|\ =

1). �

Proof of Proposition 1. Since >@ = >A for all @ , equation (5) simplifies to

D (`) =
∫ 2 (`,>A )

0
5 (2 )32.

On the other hand, by definition, 2 (`,>A ) = ` for all `. Therefore, ℎ (`) = D ′(`) = 5 (2 (`,>A )) =
5 (`), and so, ℎ is single-peaked if and only if 5 is single-peaked. �

Proof of Proposition 2. When 2@ = 2 for all @ , equation (5) simplifies to

D (`) =
∫ 1

> (`,2 )
5 (>)3>, (15)

where

> (`, 2 ) ≡ 1 − `
(1 − `) + ` 1−2

2
1−>A
>A

. (16)
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The virtual density ℎ (`) is then given by

ℎ (`) = D ′(`) = −5 (> (`, 2 )) · m
m`

> (`, 2 ),

and so,

ℎ ′(`) = −5 ′(> (`, 2 ))
(
m

m`
> (`, 2 )

)2
− 5 (> (`, 2 )) · m

2

m`2
> (`, 2 ).

Therefore, the sign of ℎ ′(`) is the same as the sign of

− 5
′(> (`, 2 ))
5 (> (`, 2 )) −

m2
m`2> (`, 2 )(
m
m`
> (`, 2 )

)2 ,
where 5 (> (`, 2 )) > 0by assumption and m> (`, 2 )/m` > 0 followsW > 0. Using (16) and substituting
W = 1−2

2
1−>A
>A

, we get

− 5
′(> (`, 2 ))
5 (> (`, 2 )) −

m2
m`2> (`, 2 )(
m
m`
> (`, 2 )

)2 = − m

m>
log 5 (> (`, 2 )) − 2W − 1

W
(1 + (W − 1)`). (17)

Substituting the value ofW into equation (16) gives: > (`, 2 ) = 1−`
1+(W−1)` . Solving for `,

` =
1 − > (`, 2 )

1 + (W − 1)> (`, 2 ) . (18)

Substituting for ` in equation (17), we get

− 5
′(> (`, 2 ))
5 (> (`, 2 )) −

m2
m`2> (`, 2 )(
m
m`
> (`, 2 )

)2 = − m

m>
log 5 (> (`, 2 )) − 2 W − 1

1 + (W − 1)> (`, 2 )

= − m

m>
log 5 (> (`, 2 )) + 6 (> (`, 2 )) ,

where 6 (>) ≡ −2 W−1
1+(W−1)> . Note that 6 (>) is increasing in > , is convex in > if W ≤ 1, and is concave

in > ifW ≥ 1. Therefore,

min
> ∈[0,1]

6 ′(>) =
{
6 ′(0) if W ≤ 1,
6 ′(1) if W ≥ 1

=

{
2(W − 1)2 if W ≤ 1,
2 (W−1)2

W 2 if W ≥ 1

= 2(W − 1)2min
{
1, 1
W 2

}
. (19)

If condition (6) holds, then
m2

m>2
log 5 (>) < min

> ∈[0,1]
6 ′(>),
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which implies
m2

m>2
log 5 (>) < 6 ′(>) ∀> ∈ [0, 1]. (20)

Our claim is that, under condition (6), ℎ ′(`) satisfies the strict single-crossing-from-above prop-
erty. To see this, take any two `, ˜̀ with ˜̀ < ` and ℎ ′(`) ≥ 0. Because > (`, 2 ) is strictly decreasing
in `, > (`, 2 ) < > ( ˜̀, 2 ). Since ℎ ′(`) ≥ 0, m

m>
log 5 (> (`, 2 )) − 6 (> (`, 2 )) ≤ 0. Then,

m

m>
log 5 (> ( ˜̀, 2 )) − 6 (> ( ˜̀, 2 ))

=
m

m>
log 5 (> (`, 2 )) − 6 (> (`, 2 )) +

∫ > ( ˜̀,2 )

> (`,2 )

(
m2

m>2
log 5 (>) − 6 ′ (>)

)
︸                          ︷︷                          ︸

<0 by (20)

3>

<
m

m>
log 5 (> (`, 2 )) − 6 (> (`, 2 )) ≤ 0.

Therefore, ℎ ′( ˜̀) > 0. The result follows. �

B Proofs for Section 3

Proof of Proposition 3. Consider a receiver @ who receivesmessage;, given sender’s strategy (f0,
f1). By Bayes’ Rule, his posteriors are given by:

Pr
@
(\ = 1|; = 1) = >@f

1

>@f1 + (1 − >@ )f0
, (21)

Pr
@
(\ = 1|; = 0) = >@ (1 − f1)

>@ (1 − f1) + (1 − >@ ) (1 − f0)
. (22)

Note that both values are increasing in >@ . Moreover, since f1 ≥ f0,

Pr
@
(\ = 1|; = 1) ≥ >@ ≥ Pr

@
(\ = 1|; = 0).

That is, good news updates the prior upwards, and bad news updates it downwards. Given the
utility function of the receiver, his action is:12

0@ (;) =
{
1 if Pr@ (\ = 1|;) ≥ 2@ ,
0 otherwise. (23)

Given the observations so far, sender’s strategy (f0, f1) partitions the receivers into the following
three groups:

1. A receiver @ is a never-supporter if and only if

2@ > Pr
@
(\ = 1|; = 1).

12The receiver is indifferent between the two actions when his posterior equals 2@ . Consequently, there is an indeterminacy in this case.
Since 5 is continuously differentiable and bounded over its support, such receivers havemeasure zero and are therefore inconsequential for
the analysis.
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Substituting (21), this is equivalent to

2@ >
>@f

1

>@f1 + (1 − >@ )f0
.

2. A receiver @ is a complier if and only if

Pr
@
(\ = 1|; = 1) ≥ 2@ > Pr

@
(\ = 1|; = 0).

Substituting (21) and (22), this is equivalent to

>@f
1

>@f1 + (1 − >@ )f0
≥ 2@ >

>@ (1 − f1)
>@ (1 − f1) + (1 − >@ ) (1 − f0)

.

3. A receiver @ is an always-supporter if and only if

2@ ≤ Pr
@
(\ = 1|; = 0).

Substituting (22), this is equivalent to:

2@ ≤
>@ (1 − f1)

>@ (1 − f1) + (1 − >@ ) (1 − f0)
.

Rearranging the inequalities yields the result. �

Proof of Proposition 4. As discussed in the proof of Theorem 1, when ℎ is single-peaked,

{` ∈ [0, 1] :+ (`) = D (`)} = {0} ∪ [ ˆ̀, 1].

If>A < ˆ̀, theoptimalpolicygenerates twoposteriors: ` ∈ {0, ˆ̀}. This is achievedby twomessages,
with one perfectly revealing the bad state. When >A ≥ ˆ̀, the optimal policy is not revealing any
information. This can be achieved by two messages, ; ∈ {0, 1}, and an information structure
where Pr(; = 1|\ = 0) = Pr(; = 1|\ = 1) = 1. Message; = 0 will occur with probability zero,
and the posterior beliefs following; = 0 will be free in a Perfect Bayesian Equilibrium. One can
assign the posterior Pr@ (\ = 0|; = 0) = 1 assign; = 0 as the message that perfectly reveals the
bad state. This proves the first part of Proposition 4.

Because the optimal policy involves the bad news perfectly revealing the bad state, f1 = 1 un-
der the optimal policy. Substituting into (7),> (2 ) = 1 for all 2 , i.e., there are no always-supporters.
Moreover,

> (2 ) = 2f0

2f0 + (1 − 2 ) ≤ 2 .

Therefore, for any @ with >@ ≥ 2@ , we have: >@ ≥ > (2@ ). By Proposition 3, then, every ex-ante
supporter is a complier. �
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C Proofs for Section 4

We begin by introducing some notation and preliminary results for the remaining proofs.

Lemma 1. The value function D (`) satisfies

lim
`→0

`D ′(`) = lim
`→1
(1 − `)D ′(`) = 0.

Proof. First, note that

D ′(`) =
∫ 1

0
5 (>, 2 (`,>)). m

m`
2 (`,>)3>

=

∫ 1

0
5 (>, 2 (`,>)) > (1 − >)>A (1 − >A )

(>A (1 − >) + `(> − >A ))2
3>,

But since 5 is bounded, there exist some� > 0 such that

|D ′(`) | ≤ �
∫ 1

0

> (1 − >)>A (1 − >A )
(>A (1 − >) + `(> − >A ))2

3>

= �
>A (1 − >A )
(>A − `)3

[
2(` − >A ) − (`(1 − >A ) + >A (1 − `)) log

(
`(1 − >A )
>A (1 − `)

)]
.

On the other hand,

lim
`→0

` · >A (1 − >A )
(>A − `)3

[
2(` − >A ) − (`(1 − >A ) + >A (1 − `)) log

(
`(1 − >A )
>A (1 − `)

)]
= lim
`→0
−(1 − >A )

>A
` log(`) = 0,

and

lim
`→1
(1 − `) · >A (1 − >A )

(>A − `)3

[
2(` − >A ) − (`(1 − >A ) + >A (1 − `)) log

(
`(1 − >A )
>A (1 − `)

)]
= lim
`→1

−>A
1 − >A

(1 − `) log(1 − `) = 0.

Therefore,
lim
`→0

`D ′(`) = lim
`→1
(1 − `)D ′(`) = 0.

This completes the proof of the Lemma. �

Consider a single-peaked virtual densityℎ (`). As discussed in the proof of Theorem 1, {` ∈ [0,
1] :+ (`) = D (`)} = {0} ∪ [ ˆ̀, 1] for some ˆ̀ ∈ [0, 1]. Note that:

• D ′(`)` < D (`) for all ` ∈ (0, 1) if and only if ˆ̀ = 0.

• D ′(`)` > D (`) for all ` ∈ (0, 1) if and only if ˆ̀ = 1.

• When ˆ̀ ∈ (0, 1), it satisfies:

D ′( ˆ̀) ˆ̀ = D ( ˆ̀). (24)
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Let

G (`) ≡ D ′(`)` − D (`) = ℎ (`)` −
∫ `

0
ℎ ( ˜̀) ˜̀, ∀` ∈ [0, 1]. (25)

Then, ˆ̀ ∈ (0, 1) is characterized by the equation: G ( ˆ̀) = 0. We start with three remarks.

Remark 1. lim`→0 G (`) = 0. This follows Lemma 1 and the fact that D (0) = 0.

Remark 2. G (`) is continuous in ` over (0, 1). This is because 5 is continuous over its support.

Remark 3. G (`) is first strictly increasing and then strictly decreasing. This is because G ′(`) =

D ′′(`)` + D ′(`) − D ′(`) = D ′′(`)` = ℎ ′(`)`. Since ℎ ′(`) satisfies strict single crossing from above,
so does G ′(`), and the remark follows.

Define the set

UG ≡ {` ∈ [0, 1] : G (`) ≥ 0}.

Based on Remarks 1, 2 and 3, we conclude thatUG has the following form:

UG = [0, ˆ̀].

Ourapproach through the restof this section isbuilt onshowing that G (`) changes inapredictable
manner (and so does ˆ̀).

Proof of Theorem 2. Let:

G1(`) = ℎ1(`)` −
∫ `

0
ℎ1( ˜̀) ˜̀,

G2(`) = ℎ2(`)` −
∫ `

0
ℎ2( ˜̀) ˜̀.

Since both virtual densities are single-peaked:

UG1 = {` ∈ [0, 1] : G1(`) ≥ 0} = [0, ˆ̀1],
UG2 = {` ∈ [0, 1] : G2(`) ≥ 0} = [0, ˆ̀2].

Take any ` ∈ (0, 1], and suppose G1(`) ≥ 0. Then,

ℎ1(`)` −
∫ `

0
ℎ1( ˜̀) ˜̀ ≥ 0,

which implies
ℎ1(`)`∫ `

0 ℎ1( ˜̀)
≥ 1.

On the other hand, since ℎ2 is larger than ℎ1 in the reversed hazard rate order,
ℎ2(`)`∫ `

0 ℎ2( ˜̀)
≥ ℎ1(`)`∫ `

0 ℎ1( ˜̀)
≥ 1,
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which implies
ℎ2(`)` −

∫ `

0
ℎ2( ˜̀) ˜̀ ≥ 0.

Therefore, G2(`) ≥ 0. We conclude that

{` ∈ [0, 1] : G1(`) ≥ 0} ⊆ {` ∈ [0, 1] : G2(`) ≥ 0},

and therefore, [0, ˆ̀1] ⊆ [0, ˆ̀2] and ˆ̀1 ≤ ˆ̀2. To conclude the proof, consider three cases:

1. If >A ≥ ˆ̀2, the optimal policy does not reveal any information in either case, and we pick
f01 = f02 = 1.

2. If ˆ̀2 > >A ≥ ˆ̀1, the optimal policy under ℎ1(`) does not reveal any information. In this case,
we pick f01 = 1 and f02 < 1.

3. If >A > ˆ̀2, the optimal policies f01 and f02 satisfy:
>A

>A + (1 − >A )f01
= ˆ̀1,

>A

>A + (1 − >A )f02
= ˆ̀2.

Then, ˆ̀2 ≥ ˆ̀1 implies f02 ≤ f01 .

In any case, f02 ≤ f01 , and the result follows. �

Proof of Corollary 2. Suppose >@ = >A for all @ , and let 5 denote the density of costs. As discussed
in the proof of Proposition 1, ℎ ′(`) = 5 ′(`) in this case. Therefore, when 51 is smaller than 52 in
the reversed hazard rate order, ℎ1 is smaller than ℎ2 in the reversed hazard rate order as well. The
result follows from Theorem 2. �

Proof of Corollary 3. Suppose 2@ = 2 for all @ , and let 5 denote the density of priors. As discussed
in the proof of Proposition 2,

ℎ (`) = −5 (> (`, 2 )) · m
m`

> (`, 2 ),

where

> (`, 2 ) = 1 − `
1 + (W − 1)` , W =

1 − 2
2

1 − >A
>A

. (26)

Therefore,
m

m`
> (`, 2 ) = − W

(1 + (W − 1)`)2 . (27)

Solving (26) for `, we get

` =
1 − > (`, 2 )

1 + (W − 1)> (`, 2 ) . (28)
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Substituting (28) into (27) gives

m

m`
> (`, 2 ) = − (1 + (W − 1)> (`, 2 ))

2

W
. (29)

Therefore,

ℎ (`) = 5 (> (`, 2 )) · (1 + (W − 1)> (`, 2 ))
2

W
. (30)

Finally, note that ∫ `

0
ℎ ( ˜̀)3 ˜̀ = D (`) =

∫ 1

> (`,2 )
5 (>̃)3>̃, (31)

where the second equality is (15). Now, consider two densities of costs, 51 and 52. By equations
(30) and (31), for any ` > 0, the virtual densities satisfy,

ℎ1(`)∫ `

0 ℎ1( ˜̀)3 ˜̀
=

51(> (`, 2 ))∫ 1
> (`,2 ) 51(>̃)3>̃

· (1 + (W − 1)> (`, 2 ))
2

W
,

and
ℎ2(`)∫ `

0 ℎ2( ˜̀)3 ˜̀
=

52(> (`, 2 ))∫ 1
> (`,2 ) 52(>̃)3>̃

· (1 + (W − 1)> (`, 2 ))
2

W
.

When 51 is larger than 52 in the hazard rate order,
51(> (`, 2 ))∫ 1

> (`,2 ) 51(>̃)3>̃
≤ 52(> (`, 2 ))∫ 1

> (`,2 ) 52(>̃)3>̃

for all `. Then,
ℎ1(`)∫ `

0 ℎ1( ˜̀)3 ˜̀
≤ ℎ2(`)∫ `

0 ℎ2( ˜̀)3 ˜̀

for all `. Thus, ℎ1 is smaller than ℎ2 in the reversed hazard rate order. The result follows from
Theorem 2. �

Proof of Theorem 3. We begin with two remarks.

Remark 4. If ℎ1(`) is a single-peaked distribution, then any distribution with density

ℎ2(`) =
(ℎ1(`))U

^
for all ` ∈ [0, 1],where U ≥ 1, ^ > 0

is single-peaked. To see this, supposeℎ1(`) is single-peaked. Then,ℎ ′1(`) satisfies the strict single-
crossing-from-above condition:

If ℎ ′1(`) ≥ 0 for some ` ∈ [0, 1], then ℎ ′1( ˜̀) > 0 for all ˜̀ < `.
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Note that

ℎ ′2(`) = U
(ℎ1(`))U−1

^
ℎ ′1(`),

which implies that the sign of ℎ ′2(`) is the same as the sign of ℎ ′1(`). The remark follows.

Remark 5. If ℎ (`) is a single-peaked distribution, then ℎ (`) > 0 for all ` ∈ (0, 1). This is a simple
consequence of the fact that, for any single-peaked distribution, there exists some ˜̀ such that
ℎ ′(`) > 0 for all ` ∈ [0, ˜̀) and ℎ ′(`) < 0 for all ` ∈ ( ˜̀, 1].

Now, take a single-peaked distribution ℎ (`). Consider a family of distributions {ℎU}U≥1 char-
acterized by

ℎU (`) =
(ℎ (`))U
^ (U) , for all ` ∈ [0, 1], U ≥ 1,

where^ (U) is the normalization constant given by

^ (U) ≡
∫ 1

0
(ℎ (B ))U3B .

The corresponding cdf’s are given by:

�U (`) ≡
∫ `

0
ℎU (F)3F =

∫ `

0 (ℎ (F))
U3B

^ (U) .

By Remark 4, any distribution in this family is single-peaked. Take any such distribution ℎU , and
let

GU (`) ≡ ℎU (`)` −�U (`).

Then, by the argument in the proof of Theorem 2, the setUGU ≡ {` ∈ [0, 1] : GU (`) ≥ 0} has the
following form:

UGU = [0, ˆ̀U].

The proof goes through by showing that ˆ̀U is decreasing in U. We start with two important re-
marks.

Remark 6. G ′U ( ˆ̀U) < 0. This follows from the fact thatUGU = [0, ˆ̀U]. Then, GU (`) crosses zero from
above at ˆ̀U . Since GU (`) is differentiable, the remark follows.

Remark 7. If ˆ̀U ∈ (0, 1), then GU ( ˆ̀U) = 0, or equivalently,

ℎU ( ˆ̀U) ˆ̀U =

∫ ˆ̀U

0
ℎU (F)3F. (32)

By Remark 7, ˆ̀U ∈ (0, 1) satisfies

GU ( ˆ̀U) = 0.
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Implicitly differentiate with respect to U to get
m

mU
GU ( ˆ̀U) + G ′U ( ˆ̀U)

m ˆ̀U
mU

= 0.

By Remark 6, G ′U ( ˆ̀U) < 0. Then, m ˆ̀U
mU
≤ 0 if and only if

m

mU
GU (`)

����
`= ˆ̀U

≤ 0.

Note that, for any ` ∈ [0, 1],
m

mU
GU (`) ≤ 0 ⇐⇒

m

mU
ℎU (`)` ≤

∫ `

0

m

mU
ℎU (F)3F.

Recall that ℎU (`) = (ℎ (`))
U

^ (U) . Therefore, for any F ∈ (0, 1), m
mU
ℎU (F) = ℎU (F)

(
logℎ (F) − ^ ′ (U)

^ (U)

)
, and

so,

m

mU
GU (`)

����
`= ˆ̀U

≤ 0 ⇐⇒ ℎU ( ˆ̀U) logℎ ( ˆ̀U) ˆ̀U ≤
∫ ˆ̀U

0
ℎU (F) logℎ (F)3F.

Using (32) to substitute ℎU ( ˆ̀U) ˆ̀U =
∫ ˆ̀U
0 ℎU (F)3F on the left hand side of the above inequality, we

have
m

mU
GU (`)

����
`= ˆ̀U

≤ 0 ⇐⇒ logℎ ( ˆ̀U)
∫ ˆ̀U

0
ℎU (F)3F ≤

∫ ˆ̀U

0
ℎU (F) logℎ (F)3F

⇐⇒
∫ ˆ̀U

0
ℎU (F) logℎ ( ˆ̀U)3F ≤

∫ ˆ̀U

0
ℎU (F) logℎ (F)3F

⇐⇒ U

∫ ˆ̀U

0
ℎU (F) logℎ ( ˆ̀U)3F ≤ U

∫ ˆ̀U

0
ℎU (F) logℎ (F)3F

⇐⇒
∫ ˆ̀U

0
ℎU (F) log(ℎ ( ˆ̀U))U3F ≤

∫ ˆ̀U

0
ℎU (F) log(ℎ (F))U3F

⇐⇒
∫ ˆ̀U

0
ℎU (F) log

(
(ℎ ( ˆ̀U))U
(ℎ (F))U

)
3F ≤ 0

⇐⇒
∫ ˆ̀U

0
ℎU (F) log

(
ℎU ( ˆ̀U)
ℎU (F)

)
3F ≤ 0.

For any real number H > 0, log(H) ≤ H − 1, with a strict inequality for any H ≠ 1. Therefore,∫ ˆ̀U

0
ℎU (F) log

(
ℎU ( ˆ̀U)
ℎU (F)

)
3F ≤

∫ ˆ̀U

0
ℎU (F)

(
ℎU ( ˆ̀U)
ℎU (F)

− 1
)
3F.

Therefore, m
mU
GU (`)

���
`= ˆ̀U

≤ 0 as long as∫ ˆ̀U

0
ℎU (F)

(
ℎU ( ˆ̀U)
ℎU (F)

− 1
)
3F ≤ 0 ⇐⇒

∫ ˆ̀U

0
(ℎU ( ˆ̀U) − ℎU (F)) 3F ≤ 0

⇐⇒
∫ ˆ̀U

0
ℎU ( ˆ̀U)3F ≤

∫ ˆ̀U

0
ℎU (F)3F
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⇐⇒ ℎU ( ˆ̀U) ˆ̀U ≤
∫ ˆ̀U

0
ℎU (F)3F,

which is guaranteed by (32). We conclude that for any ˆ̀U ∈ (0, 1), m ˆ̀UmU
≤ 0.

Since ℎ1 and ℎ2 are within the family we considered (with ℎ1 corresponding to U = 1 and ℎ2
corresponding to some U ≥ 1), ˆ̀2 ≤ ˆ̀1. Repeating the same argument in the proof of Theorem 2,
we conclude that f02 ≥ f01 . �

D Proofs for Section 5

Note that single-dippedness of the virtual density is equivalent to the following strict single-
crossing-from-below property for ℎ ′(`):

If ℎ ′(`) ≥ 0 for some ` ∈ [0, 1], then ℎ ′( ˜̀) > 0 for all ˜̀ > `.

Proof of Proposition 5. If ℎ ′(`) satisfies the strict single-crossing-from-below condition, by defi-
nition, so does D ′′(`). Therefore, whenever D (`) is convex at `, it is strictly convex at any ˆ̀ ≥ `.
Thismeans thatD (`) is first strictly concave and then strictly convex. Therefore, the set where the
concave closure of D (`) coincides with D (`) has the following form:

{` ∈ [0, 1] :+ (`) = D (`)} = [0, ˆ̀] ∪ {1}.

When >A < ˆ̀, the optimal policy is not revealing any information. This can be achieved by two
messages,; ∈ {0, 1}, and an information structure where Pr(; = 1|\ = 0) = Pr(; = 1|\ = 1) = 0.
Message; = 1 will occur with probability zero, and the posterior beliefs following; = 1 will be
free in a Perfect Bayesian Equilibrium. One can assign posteriors Pr@ (\ = 1|; = 1) = 1 to make
; = 1 as themessage that perfectly reveals the good state.

When >A ≥ ˆ̀, by Corollary 2 of Kamenica and Gentzkow (2011), the optimal policy generates
two posteriors: ` ∈ { ˆ̀, 1}. This is achieved by two messages, ; ∈ {0, 1}, where message; = 1
perfectly reveals the good state.

Because the optimal policy involves the good news perfectly revealing the good state, f0 = 0
in the optimal policy. Substituting into (7), > (2 ) = 0 for all 2 , i.e., there are no never-supporters.
Moreover,

> (2 ) = 2

2 + (1 − 2 ) (1 − f1) ≥ 2 .

Therefore, for any @ with >@ < 2@ , we have: >@ < > (2@ ). By Proposition 3, then, every ex-ante oppo-
nent is a complier. �

Proof of Proposition 6. The proof of Proposition 6 is identical to the proof of Proposition 1. �

Proof of Proposition 7. The proof follows identical steps to that of Proposition 2 until equation
(19). The rest of the argument is provided below.
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Recall that 6 (>) ≡ −2 W−1
1+(W−1)> and 6 (>) is increasing in > , convex in > ifW ≤ 1, and concave in >

ifW ≥ 1. Therefore,

max
> ∈[0,1]

6 ′(>) =
{
6 ′(1) ifW ≤ 1
6 ′(0) ifW ≥ 1 =

{
2 (W−1)2

W 2 ifW ≤ 1
2(W − 1)2 ifW ≥ 1

= 2(W − 1)2max
{
1, 1
W 2

}
. (33)

If condition (13) holds,
m2

m>2
log 5 (>) > max

> ∈[0,1]
6 ′(>),

and so
m2

m>2
log 5 (>) > 6 ′(>) ∀> ∈ [0, 1]. (34)

Our claim is that, under condition (13),ℎ ′(`) satisfies the strict single-crossing-from-belowprop-
erty. To see this, take any two `, ˜̀ with ˜̀ > ` and ℎ ′(`) ≥ 0. Because > (`, 2 ) is strictly decreasing
in `, > ( ˜̀, 2 ) < > (`, 2 ). Since ℎ ′(`) ≥ 0, m

m>
log 5 (> (`, 2 )) − 6 (> (`, 2 )) ≤ 0. Then,

m

m>
log 5 (> ( ˜̀, 2 )) − 6 (> ( ˜̀, 2 ))

=
m

m>
log 5 (> (`, 2 )) − 6 (> (`, 2 )) −

∫ > (`,2 )

> ( ˜̀,2 )

(
m2

m>2
log 5 (>) − 6 ′ (>)

)
︸                          ︷︷                          ︸

>0 by (34)

3>

<
m

m>
log 5 (> (`, 2 )) − 6 (> (`, 2 )) ≤ 0.

Therefore, ℎ ′( ˜̀) > 0. The result follows. �

We continue by introducing some notation and preliminary results for the remaining proofs.
Consider a single-dipped virtual density ℎ (`). As discussed in the proof of Proposition 5, {` ∈

[0, 1] :+ (`) = D (`)} = [0, ˆ̀] ∪ {1} for some ˆ̀ ∈ [0, 1]. Note that:

• D ′(`) (1 − `) > 1 − D (`) for all ` ∈ (0, 1) if and only if ˆ̀ = 1.

• D ′(`) (1 − `) < 1 − D (`) for all ` ∈ (0, 1) if and only if ˆ̀ = 0.

• When ˆ̀ ∈ (0, 1), it satisfies:

D ′( ˆ̀) (1 − ˆ̀) = 1 − D ( ˆ̀). (35)

Let

H (`) ≡ D ′(`) (1 − `) − (1 − D (`)) = ℎ (`) (1 − `) −
∫ 1

`

ℎ ( ˜̀) ˜̀, ∀` ∈ [0, 1]. (36)

Then, ˆ̀ ∈ (0, 1) is characterized by the equation: H ( ˆ̀) = 0. We start with three remarks.

Remark 8. lim`→1 H (`) = 0. This follows Lemma 1 and the fact that 1 − D (1) = 0.
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Remark 9. H (`) is continuous in ` over (0, 1). This is because 5 is continuous over its support.

Remark 10. H (`) is first strictly decreasing and then increasing. This is because H ′(`) = D ′′(`) (1 −
`) − D ′(`) + D ′(`) = D ′′(`) (1 − `) = ℎ ′(`) (1 − `). Since ℎ ′(`) satisfies strict single crossing from
below, so does H ′(`), and the remark follows.

Define the set

LH ≡ {` ∈ [0, 1] : H (`) ≤ 0}.

Based on Remarks 8, 9 and 10, we conclude that LH has the following form:

LH = [ ˆ̀, 1].

Ourapproach through the rest of this section isbuilt on showing that H (`) changes inapredictable
manner (and so does ˆ̀).

Proof of Theorem 4. Let:

H1(`) = ℎ1(`) (1 − `) −
∫ 1

`

ℎ1( ˜̀) ˜̀,

H2(`) = ℎ2(`) (1 − `) −
∫ 1

`

ℎ2( ˜̀) ˜̀.

Since both virtual densities are single-dipped:

LH1 = {` ∈ [0, 1] : H1(`) ≤ 0} = [ ˆ̀1, 1],
LH2 = {` ∈ [0, 1] : H2(`) ≤ 0} = [ ˆ̀2, 1].

Take any ` ∈ [0, 1), and suppose H1(`) ≤ 0. Then,

ℎ1(`) (1 − `) −
∫ 1

`

ℎ1( ˜̀) ˜̀ ≤ 0,

which implies
ℎ1(`) (1 − `)∫ 1

`
ℎ1( ˜̀)

≤ 1.

On the other hand, since ℎ2 is larger than ℎ1 in the hazard rate order,
ℎ2(`) (1 − `)∫ 1

`
ℎ2( ˜̀)

≤ ℎ1(`) (1 − `)∫ 1
`
ℎ1( ˜̀)

≤ 1,

and so,

ℎ2(`) (1 − `) −
∫ 1

`

ℎ2( ˜̀) ˜̀ ≤ 0.

Therefore, H2(`) ≤ 0. We conclude that

{` ∈ [0, 1] : H1(`) ≤ 0} ⊆ {` ∈ [0, 1] : H2(`) ≤ 0},

and therefore, [ ˆ̀1, 1] ⊆ [ ˆ̀2, 1] and ˆ̀1 ≥ ˆ̀2. To conclude the proof, consider three cases:
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1. If >A ≤ ˆ̀2, the optimal policy does not reveal any information in either case, and we pick
f11 = f12 = 0.

2. If ˆ̀2 < >A ≤ ˆ̀1, the optimal policy under ℎ1(`) does not reveal any information. In this case,
we pick f11 = 0 and f12 > 0.

3. If >A < ˆ̀2, the optimal policies f11 and f12 satisfy:

>A (1 − f11 )
>A (1 − f11 ) + (1 − >A )

= ˆ̀1,
>A (1 − f12 )

>A (1 − f12 ) + (1 − >A )
= ˆ̀2.

Then, ˆ̀2 ≤ ˆ̀1 implies f12 ≥ f11 .

In any case, f12 ≥ f11 , and the result follows. �

Proof of Corollary 4. Suppose >@ = >A for all @ , and let 5 denote the density of costs. As discussed
in the proof of Proposition 1, ℎ ′(`) = 5 ′(`) in this case. Therefore, when 51 is smaller than 52 in
the hazard rate order,ℎ1 is smaller thanℎ2 in the hazard rate order aswell. The result follows from
Theorem 4. �

Proof of Corollary 5. Suppose 2@ = 2 for all @ , and let 5 denote the density of priors. As discussed
in the proof of Proposition 2,

ℎ (`) = −5 (> (`, 2 )) · m
m`

> (`, 2 ),

where

> (`, 2 ) = 1 − `
1 + (W − 1)` , W =

1 − 2
2

1 − >A
>A

. (37)

Therefore,
m

m`
> (`, 2 ) = − W

(1 + (W − 1)`)2 . (38)

Solving (37) for `, we get

` =
1 − > (`, 2 )

1 + (W − 1)> (`, 2 ) . (39)

Substituting (39) into (38) gives

m

m`
> (`, 2 ) = − (1 + (W − 1)> (`, 2 ))

2

W
. (40)

Therefore,

ℎ (`) = 5 (> (`, 2 )) · (1 + (W − 1)> (`, 2 ))
2

W
. (41)
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Finally, note that ∫ 1

`

ℎ ( ˜̀)3 ˜̀ = 1 − D (`) =
∫ > (`,2 )

0
5 (>̃)3>̃, (42)

where the second equality follows (15). Now, consider two densities of costs, 51 and 52. By equa-
tions (41) and (42), for any ` > 0, the virtual densities satisfy,

ℎ1(`)∫ 1
`
ℎ1( ˜̀)3 ˜̀

=
51(> (`, 2 ))∫ > (`,2 )

0 51(>̃)3>̃
· (1 + (W − 1)> (`, 2 ))

2

W
,

and
ℎ2(`)∫ 1

`
ℎ2( ˜̀)3 ˜̀

=
52(> (`, 2 ))∫ > (`,2 )

0 52(>̃)3>̃
· (1 + (W − 1)> (`, 2 ))

2

W
.

When 51 is larger than 52 in the hazard rate order,
51(> (`, 2 ))∫ > (`,2 )

0 51(>̃)3>̃
≥ 52(> (`, 2 ))∫ > (`,2 )

0 52(>̃)3>̃

for all `. Then,
ℎ1(`)∫ 1

`
ℎ1( ˜̀)3 ˜̀

≤ ℎ2(`)∫ 1
`
ℎ2( ˜̀)3 ˜̀

for all `. Thus, ℎ1 is larger than ℎ2 in the reversed hazard rate order. The result follows from The-
orem 4. �

Proof of Theorem 5. We begin with two remarks.

Remark 11. If ℎ1(`) is a single-dipped distribution, then any distribution with density

ℎ2(`) =
(ℎ1(`))U

^
for all ` ∈ [0, 1],where U ≥ 1, ^ > 0

is single-dipped. To see this, supposeℎ1(`) is single-dipped. Then,ℎ ′1(`) satisfies the strict single-
crossing-from-below property:

If ℎ ′1(`) ≥ 0 for some ` ∈ [0, 1], then ℎ ′1( ˜̀) > 0 for all ˜̀ > `.

Note that

ℎ ′2(`) = U
(ℎ1(`))U−1

^
ℎ ′1(`),

which implies that the sign of ℎ ′2(`) is the same as the sign of ℎ ′1(`). The remark follows.

Remark 12. If ℎ (`) is a single-dipped distribution, then ℎ (`) > 0 for almost all `. This is a sim-
ple consequence of the fact that for any single-dipped distribution, there exists some ˜̀ such that
ℎ ′(`) < 0 for all ` ∈ [0, ˜̀) and ℎ ′(`) > 0 for all ` ∈ ( ˜̀, 1]. The only point ` at which ℎ (`) could be
zero is ˜̀.
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Now, take a single-dipped distribution ℎ (`). Consider a family of distributions {ℎU}U≥1 char-
acterized by

ℎU (`) =
(ℎ (`))U
^ (U) , for all ` ∈ [0, 1], U ≥ 1,

where^ (U) is the normalization constant given by

^ (U) ≡
∫ 1

0
(ℎ (B ))U3B .

The corresponding cdf’s are given by:

�U (`) ≡
∫ `

0
ℎU (F)3F =

∫ `

0 (ℎ (F))
U3B

^ (U) .

By Remark 11, any distribution in this family is single-dipped. Take any such distribution ℎU , and
let

HU (`) ≡ ℎU (`) (1 − `) − (1 −�U (`)).

Then, by the argument in the proof of Theorem 2, the set LHU ≡ {` ∈ [0, 1] : HU (`) ≤ 0} has the
following form:

LHU = [ ˆ̀U , 1].

The proof goes through by showing that ˆ̀U is decreasing in U. We start with two important re-
marks.

Remark 13. H ′U ( ˆ̀U) < 0. This follows from the fact that LHU = [ ˆ̀U , 1]. Then, HU (`) crosses zero
from above at ˆ̀U . Since HU (`) is differentiable, the remark follows.

Remark 14. If ˆ̀U ∈ (0, 1), then HU ( ˆ̀U) = 0, or equivalently,

ℎU ( ˆ̀U) (1 − ˆ̀U) =
∫ 1

ˆ̀U
ℎU (F)3F. (43)

By Remark 14, ˆ̀U ∈ (0, 1) satisfies

HU ( ˆ̀U) = 0.

Implicitly differentiate with respect to U to get
m

mU
HU ( ˆ̀U) + H ′U ( ˆ̀U)

m ˆ̀U
mU

= 0.

By Remark 13, H ′U ( ˆ̀U) < 0. Then, m ˆ̀U
mU
≤ 0 if and only if

m

mU
HU (`)

����
`= ˆ̀U

≤ 0.

38



Note that, for any ` ∈ [0, 1],
m

mU
HU (`) ≤ 0 ⇐⇒

m

mU
ℎU (`) (1 − `) ≤

∫ 1

`

m

mU
ℎU (F)3F.

Recall that ℎU (`) =
(ℎ (`))U
^ (U) . Therefore, for any F for which ℎU (F) > 0, we have m

mU
ℎU (F) =

ℎU (F)
(
logℎ (F) − ^ ′ (U)

^ (U)

)
, and so,

m

mU
HU (`)

����
`= ˆ̀U

≤ 0 ⇐⇒ ℎU ( ˆ̀U) logℎ ( ˆ̀U) (1 − ˆ̀U)) ≤
∫ 1

ˆ̀U
ℎU (F) logℎ (F)3F,

where we are using the fact that, by Remark 12, ℎU (F) > 0 almost everywhere. Using (43) to sub-
stitute ℎU ( ˆ̀U) (1 − ˆ̀U) =

∫ 1
ˆ̀U ℎU (F)3F on the left hand side of the above inequality, we have

m

mU
HU (`)

����
`= ˆ̀U

≤ 0 ⇐⇒ logℎ ( ˆ̀U)
∫ 1

ˆ̀U
ℎU (F)3F ≤

∫ 1

ˆ̀U
ℎU (F) logℎ (F)3F

⇐⇒
∫ 1

ˆ̀U
ℎU (F) logℎ ( ˆ̀U)3F ≤

∫ 1

ˆ̀U
ℎU (F) logℎ (F)3F

⇐⇒ U

∫ 1

ˆ̀U
ℎU (F) logℎ ( ˆ̀U)3F ≤ U

∫ 1

ˆ̀U
ℎU (F) logℎ (F)3F

⇐⇒
∫ 1

ˆ̀U
ℎU (F) log(ℎ ( ˆ̀U))U3F ≤

∫ 1

ˆ̀U
ℎU (F) log(ℎ (F))U3F

⇐⇒
∫ 1

ˆ̀U
ℎU (F) log

(
(ℎ ( ˆ̀U))U
(ℎ (F))U

)
3F ≤ 0

⇐⇒
∫ 1

ˆ̀U
ℎU (F) log

(
ℎU ( ˆ̀U)
ℎU (F)

)
3F ≤ 0.

For any real number H > 0, log(H) ≤ H − 1, with a strict inequality for any H ≠ 1. Therefore,∫ 1

ˆ̀U
ℎU (F) log

(
ℎU ( ˆ̀U)
ℎU (F)

)
3F ≤

∫ 1

ˆ̀U
ℎU (F)

(
ℎU ( ˆ̀U)
ℎU (F)

− 1
)
3F.

Therefore, m
mU
HU (`)

���
`= ˆ̀U

≤ 0 as long as∫ 1

ˆ̀U
ℎU (F)

(
ℎU ( ˆ̀U)
ℎU (F)

− 1
)
3F ≤ 0 ⇐⇒

∫ 1

ˆ̀U
(ℎU ( ˆ̀U) − ℎU (F)) 3F ≤ 0

⇐⇒
∫ 1

ˆ̀U
ℎU ( ˆ̀U)3F ≤

∫ ˆ̀U

0
ℎU (F)3F

⇐⇒ ℎU ( ˆ̀U) (1 − ˆ̀U) ≤
∫ 1

ˆ̀U
ℎU (F)3F,

which is guaranteed by (43). We conclude that for any ˆ̀U ∈ (0, 1), m ˆ̀UmU
≤ 0.

Since ℎ1 and ℎ2 are within the family we considered (with ℎ1 corresponding to U = 1 and ℎ2
corresponding to some U ≥ 1), ˆ̀2 ≤ ˆ̀1. Repeating the same argument in the proof of Theorem 2,
we conclude that f12 ≥ f11 . �
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